Диференціал 5

Диференціал

План

$Диференціал функції.

Геометричний зміст диференціала.

Лінеаризація функції.

Диференціал складної функції.

Повний диференціал функції декількох змінних.

Достатні умови диференційованості функції.

Рівняння дотичної площини до поверхні і нормалі.

Інваріантність форми диференціала.

Диференціювання функцій, заданих параметрично.

Неявні функції, їх диференціювання.

1. Диференціал функц$ії

1.1 Означення диференційованої функції

Означення. Функція називається диференційованою в точці , якщо її приріст в цій точці можна зобразити в такому вигляді:

(6.48)

де — число, а прямує до нуля, коли приріст прямує до нуля.

Означення. Функція називається диференційованою $в точці , якщо її повний приріст в цій точці можна зобразити в такому вигляді:

(6.49) де

— числа; і — нескінченно малі при (при ).

Теорема. Для того щоб функція в точці була диференційованою, необхідно і достатньо, щоб для неї в цій точці існувала скінчена похідна . При виконанні цієї умови рівність (6.48) має місце, коли стала дорівнює саме цій похідній:

(6.50)

Наслідок. Якщо функція в точці має (скінчену) похідну,$ то в цій точці функція необхідно неперервна.

Дійсно, із (6.50) зрозуміло, що з умови випливає .

Для функції двох змінних умова диференційованості жорстокіша, ніж існування частинних похідних в точці.

Теорема (необхідна умова диференційованості). Функція диференційована в точці , непе$рервна в цій точці і має в ній частинні похідні за обома змінними.

Теорема (достатня умова диференційованості). Якщо функція має частинні похідні за змінними і якщо ці частинні похідні неперервні в цій самій точці , то функція диференційована в цій точці.

Зауваження. Функція (всякого числа змінних), диференційо$вана в кожній точці деякої області, називається диференційованою в цій області.

1.2 Диференціал

Диференціал функції однієї змінної . Зазначимо, що доданки в рівності (6.50) відіграють неоднакову роль. Так, другий додаток при є величина вищого порядку малості, ніж ,

тоді як перший доданок , якщо і , є величина одного порядку малості з . Крім того, другий доданок в рівності (6.50) при і є величина вищого поря$дку малості, ніж перший,

Отже, перший доданок в рівності (6.50) є головною частиною приросту функції.

Означення. Добуток називається диференціалом функції в точці і позначається символом або ,

, . (6.51)

Диференціалом аргументу називається його приріст, тобто вважають . Тоді формула для диференціала функції набира$є вигляду

,

або

(6.52)

Користуючись співвідношенням (6.52), складемо таблицю для диференціалів від елементарних функцій:$

1. , .

2. , .

3. , .

4. , .

5. , .

6. , .

7. , .

8. , .

9. , .

10. , .

11. , .

12. , .

13. , .

14. , .

15. , .

16. , .

17. , .

18. , .

Властивості диференціала. Якщо і — диференційовані функції, то безпосередньо із визначення диференціала і властивостей похідних маємо такі властивості диференціала:

1) (),

2) ,

) ,

4) .

Геометричний зміст диференціала. Нехай г$рафік диференційованої функції має вигляд, зображений на рис. 6.6 (крива ).

Візьмемо на кривій точки і . У точці про$ведемо дотичну до кривої . Тоді з трикутника знайдемо довжину відрізка :

або

. (6.53)

Рівність (6.53) і характеризує геометричний зміст диференціала: диференціал функції дорівнює приросту ординати дотичної до графіка цієї функції в розглядуваній точці.

Рис.6.6

Механічний зміст диференціала. Припустимо, що матеріальна точка рухається за відомим законом

де — диференційована функц$ія при деякому значенні часу . Тоді функція має диференціал

,або .

Добуток виражає шлях, який точка проходить за час , рухаючись із сталою швидкіс$тю .

Отже, механічне тлумачення диференціала функції таке: диференціал функції виражає той шлях, який точка пройшла б за час , якби вона рухалася прямолінійно і рівномірно зі сталою швидкістю .

6.6.3. Повний диференціал функції двох змінних

Означення повного диференціала. Нехай функція в деякій області неперервна і має частинні похідні та .

Виберемо в цій області довільну точку .$ Надамо приросту обом аргументам, тобто візьмемо точку

. Для приросту

одержуємо такий вираз:

(6.54)

При і останні два доданки є нескінченно малими вищого порядку, оскільки і . Перших два доданки складають головну частину у виразі повного приросту .

Означення. Головна, лінійна відносно і частина приросту функції$ називається повним диференціалом функції двох змінних і позначається або :

. (6.55)

(Легко бачити, що це означення приводить до введеного вище поняття диференціала функції однієї змінної, якщо замість розглядати $функцію ).

Приклад. Знайти повний диференціал функції .

Р о з в ’ я з о к.

В будь-який точці .

Зауваження. Означення повного диференціала легко узагальнюється на випадок диференційованої функції будь-якого числа змінних.

Повним диференціалом функції в даній точці називається головна, лінійна відносно приросту всіх аргументів частина повного приросту функції.

Приклад. .

Р о з в ‘ я з о к.

В будь-які й точці

.

Означення дотичної площини і нормалі до поверхні. Є кілька еквівалентних між собою означень дотичної площини до поверхні. Ми дамо означення, яке є природним узагальненням о$значення дотичної (прямої) до кривої (рис. 6.7).

Нехай — точка даної поверхні. Розглянемо на поверхні другу, змінну точку і проведемо січну пряму .

Площина, що п$роходить через точку , називається дотичною площиною до поверхні в точці , якщо кут між січною і цією площиною прямує до нуля, коли віддаль прямує до нуля, яким би чином точка на поверхні не прямувала б до точки .

Нормаллю до поверхні в т$очці називається пряма, що проходить через точку перпендикулярно до дотичної площини до поверхні в цій точці.

Рівняння дотичної площини і нормалі. У поверхні, заданої рівнянням , де — функція, диференційована в точці , дотична площина в точці існує і має рівняння

. (6.56)

За рівнянням дотичної площини до поверхні в точці легко записати рівняння нормалі:

. (6.57)

Геометричний зміст повного диференціала. Нехай функція диференційована в точці . Це означає, що поверхня, задана рівнянням , має в точці дотичну площину (рис. 6.8). Її рівняння (6.$56),

$Рис.6.7 Рис.6.8

поклавши ; , можна записати у вигляді

.

У цьому рівнянні зліва стоїть різниця аплікат точок дотичної площини, відповідних точкам і , а справа – повний диференціал функції в точці .

Отже, повний диференціал функції в точці геометрично означає приріст аплікати дотичної площини до поверхні, яка зображує функцію, в точці при переході із точки в точку .

Інваріантна форма запису диференціала. За означенням, для диференційованої в точці ф$ункції двох незалежних змінних

.

Покладемо, зокрема, (тобто ), одержимо Отже, . Аналогічно, поклавши , одержимо . Таким чином, диференціали незалежних змінних співпадають з приростом цих змінних, і ми можемо записати диференціал функції у вигляді

,

або, що те саме,

.

Нехай де і — складні функції незалежних змінних і . Допустимо, що функції і диференційовані в точці , а функція диференцій$ована в точці , де , . Тоді складна функція буде диференційована в точці . При цьому, згідно з (6.58),

.

Застосувавши правила для обчислення частинних похідних

складної функції (формули 6.47), одержимо

Оскільки в дужках стоять повні диференціали функцій , , маємо:

.

Отже, і у випадку, коли та — незалежні змінні, і у випадку, коли та — незалежні змінні, диференціал функції можна за$писати у формі

.

У зв’язку з цим така форма запису повного диференціала називається інваріантною.

Форма запису повного диференціала

не буде інваріантною, $вона може використовуватися лише, якщо і — незалежні змінні, оскільки у противному разі , .

6.7. Диференціювання параметрично заданих функцій

Означення. Задання функціональної залежності між і у вигляді двох функцій від тієї самої допоміжної змінної називається параметричним заданням$ функції. Допоміжна змінна при цьому називається параметром.

Виведемо формулу для похідної від функції, заданої параметрично. Припустимо, що функції, заданої параметрично. Припустимо, що функції і диференційовані в кожній точці інтервалу і для$ цих значень функція така, що похідна від неї не дорівнює нулю, .

Тоді для кожної функції існують диференціали , звідки

, (6.59)

або

.

Приклад. Знайти похідну від функції, яка задана параметрично, , .

Р о з в ’ я з о к. Знайдемо і :

,

;

.

6.8. Неявні функції, їх диференціювання

Розглянемо випадок неявної функції від однієї незалежної змінної . Нехай дано рівняння .

Припустимо, що це рівняння визначає єдину і при цьому диференційовану функцію аргументу . Для цього повинні виконуватись певні умови, д$оведення яких опускається.

Теорема. (теорема існування неявної функції). Нехай:

1) функція означена і неперервна разом із своїми частинними похідними та в деякому околі точки ;

2) в точці дорівнює$ нулю:

;

3) в точці відмінна від нуля: .

Тоді

1) в деякому прямокутнику

рівняння визначає як однозначну функцію від : ;

2) при ця функція набуває значення :

;

3) на інтервалі функція неперервна і має неперервну похідну.

Знайдемо цю похідну. Оскільки у вказаному інтервалі , то для будь-якої її точки а$бо, що те саме, , де .

Обчислюючи повну похідну, маємо

,

звідки

. (6.61)

Приклад. Знайти похідну функції .

Р о з в ’ я з о к.

.

Нехай задано рівняння

(6.62)

і при цьому виконуються умови, аналогічні умовам 1) — 3). Можна

довести, що рів$няння (6.62) визначає в деякому околі точки площини єдину і питому диференційовану функцію , яка набуває значення при , .

Частинні похідні такої функції обчислюються за формулами:

; . (6.63)

Розглянемо деякі застосування теорії неявних функцій. Нехай плоска крива задана рівнянням в точці записується у вигляді

. (6.64)

$Рівняння нормалі до кривої в точці записується у вигляді

. (6.65)

Нехай поверхня задана рівнянням . Візьмемо в ній точку .

Рівняння дотичної пл$ощини до поверхні в точці записується у вигляді

(6.66)

Рівняння нормалі до тієї самої поверхні в точці має вигляд

. (6.67)

Приклади.

1. Знайти рівняння дотичної і нормалі до еліпса в точці .

Р о з в ’ я з о к. Тут ; ; функції, неперервні скрізь.

$

Оскільки , крива має в цій точці дотичну і нормаль. Їх рівняння:

дотичної ;

нормалі .

2. Знайти рівняння дотичної площини і нормалі до поверхні в точці .

Р о з в ’ я з о к. Тут ; ;

, — функції, неперервні скрізь, , отож, в точці можна провести дотичну площину і нормаль до поверхні.

Рівняння:

дотичної площини ;

нормалі .

Post Comment