Модель большого взрыва и расширяющейся вселенной 2

МОДЕЛЬ БОЛЬШОГО ВЗРЫВА И $РАСШИРЯЮЩЕЙСЯ ВСЕЛЕННОЙ

СОДЕРЖАНИЕ

ВВЕДЕНИЕ. 2

1. Гипотеза Большого Взрыва.3

2. Модель расширяющейся Вселенной.6

ЗАКЛЮЧЕНИЕ. 10

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ.. 12

ВВЕДЕНИЕ

Наблюдаемая нами Вселенная, по $данным современной науки, возникла в результате Большого взрыва около 15-20 млрд. лет назад. Представление о Большом Взрыве является составной частью модели расширяющейся Вселенной.

Все вещество Вселенной в начальном состоянии на$ходилось в сингулярной точке: бесконечная плотность массы, бесконечная кривизна пространства и взрывное, замедляющееся со временем расширение при высокой температуре, при которой могла существовать только смесь элементарных частиц. Затем последовал взрыв.

«Вначале был взрыв. Не такой взрыв, который знаком нам на Земле и который начинается из определенного центра и затем распространяется, захватывая все больше и больше пространства, а взрыв, который произошел одновременно везде, заполнив с самого начала все пространство, причем каждая частица материи устремилас$ь прочь от любой другой частицы», – писал в своей работе С. Вейнберг[1]$.

Что же было после Большого взрыва? Образовался сгусток плазмы – состояния, в котором находятся элементарные частицы – нечто среднее между твердым и жидким состоянием, который и начал расширяться все больше и больше под действием взрывной волны. Через 0,01 сек. после начала Большого Взрыва во Вселенной появилась смесь легких ядер. Так появились не только материя и многие химические элементы, н$о и пространство и время.

Но теория Большого взрыва не может разрешить три фундаментальные проблемы: что было до начального момента, какова природа сингулярности и каким образом формировались галактики.

1. Гипотеза Большого Взрыва.$

Большой Взрыв – начало расширения Вселенной, перед которым Вселенная находилась в сингулярном состоянии.

Примерно 15 миллиардов лет назад, в гигантском взрыве началась Вселенная – горячий Большой взрыв! Её последующая эволюция от одной сотой секунды до с$егодняшнего дня может быть надежно описана моделью Большого взрыва. Эта модель включает расширение Вселенной, возникновение легких элементов и реликтовое излучение от первоначального ядра, а также общие контуры понимания формирования галактик и других крупномасштабных структур. Фактически,$ модель Большого взрыва в настоящее время является настолько хорошо подтвержденной, что её называют стандартной космологией.

Согласно космологической модели Фридмана – Леметра, Вселенная возникла в момент Большого взрыва – около 20 млрд. лет назад, и ее расширение продолжается до сих пор, постепенно замедляясь. В первое мгновение взрыва материя Вселенной имела бесконечную плотность и температуру – такое состояние называют сингулярностью[2].

Согласно общей теории относительности, гравитация не является р$еальной силой, а есть искривление пространства-времени: чем больше плотность материи, тем сильнее искривление. В момент начальной син$гулярности искривление тоже было бесконечным. Можно выразить бесконечную кривизну пространства-времени другими словами, сказав, что в начальный момент материя и пространство одновременно взорвались везде во Вселенной.

По мере увеличения объема пространства расширя$ющейся Вселенной плотность материи в ней падает. С.Хокинг и Р.Пенроуз доказали, что в прошлом непременно было сингулярное состояние, если общая теория относительности применима для описания физических процессов в очень ранней Вселенной[3].

Чтобы избежать катастрофической сингулярности в прошлом, требуется существенно изменить физику, например, предположив возможность самопроизвольного непрерывн$ого рождения материи, как в теории стационарной Вселенной. Но астрономические наблюдения не дают для этого никаких оснований.

Изучая процессы, происходившие сразу после Большого взрыва, мы понимаем, что наши физические теории еще весьма несовершенны. Тепловая эво$люция ранней Вселенной зависит от рождения массивных элементарных частиц – адронов, о которых ядерная физика знает еще мало. Многие из этих частиц нестабильны и короткоживущи.

Физик Р.Хагедорн считает, что может существовать великое множество адронов возрастающих масс, которые в изобилии могли формироваться при температуре порядка 1012 К, когда гигантская п$лотность излучения приводила к рождению адронных пар, состоящих из частицы и античастицы. Этот процесс должен был бы ограничить рост температуры в прошлом[4].

Согласно другой точке зрения, количество типов массивных элементарных ч$астиц ограничено, поэтому температура и плотность в период адронной эры должны были достигать бесконечных значений. В принципе это можно было бы проверить: если бы составляющие адроно$в – кварки – были стабильными частицами, то некоторое количество кварков и антикварков должно было сохраниться от той горячей эпохи. Но поиск кварков оказался тщетным; скорее всего, они нестабильны.

После первой миллисекунды расширения Вселенной сильное (ядерное) взаимодействие перестало играть в ней определяющую роль: температура снизилась настолько, что атомные ядра перестали разрушаться. Дальнейшие физические процессы определялись слабым взаимодействием, ответственным за рождение легких частиц – лептонов (т.е. электронов, позитронов, м$езонов и нейтрино) под действием теплового излучения. Когда в ходе расширения температура излучения понизилась примерно до 1010 К, лептонные пары перестали рождаться, почти все позитроны и электроны аннигилировали; остались лишь нейтрино и антинейтрино, фотоны и немного сохр$анившихся с предшествующей эпохи протонов и нейтронов. Так завершилась лептонная эра.

Следующая фаза расширения – фотонная эра – характеризуется абсолютным преобладанием теплового излучения. На каждый сохранившийся протон или электрон приходится по миллиарду$ фотонов. Вначале это были гамма-кванты, но по мере расширения Вселенной они теряли энергию и становились рентгеновскими, ультрафиолетовыми, оптическими, инфракрасными и, наконец, сейчас стали радиоквантами, которые мы принимаем как чернотельное фоновое (реликтовое) радиоизлучение.

$

Первое подтверждение факта взрыва пришло в 1964 году, когда американские радиоастрономы Р. Вильсон и А. Пензиас обнаружили реликтовое электромагнитное излучение с температурой около 3° по шкале Кельвина (–270°С). Именно это открытие, неожиданное для ученых, убедило их в том, что Большой взрыв действительно имел место и поначалу Вселенная была очень горячей[5]. Теория Большого взрыва позволила объяснить множество проблем, сто$явших перед космологией. Но, к сожалению, а может, и к счастью, она же поставила и ряд новых вопросов.

Все это указывало на то, что теория Большого взрыва неполна. Долгое время казалось, что продвинуться дал$ее уже невозможно. Только четверть века назад благодаря работам российских физиков Э. Глинера и А. Старобинского, а также американца А. Гуса было описано новое явление – сверх-быстрое инфляционное расширение Вселенной.

Вопрос о происхождении Вселенной со всеми ее известными и пока неведомыми свойствами испокон веков волнует человека. Но только в XX веке,$ после обнаружения космологического расширения, вопрос об эволюции Вселенной стал понемногу проясняться.

Последние научные данные позвол$или сделать вывод, что наша Вселенная родилась 15 миллиардов лет назад в результате Большого взрыва. Но что именно взорвалось в тот момент и что, собственно, существовало до Большого взрыва, по-прежнему оставалось загадкой. Со$зданная в конце XX века инфляционная теория появления нашего мира позволила существенно продвинуться в разрешении этих вопросов, и общая картина первых мгновений Вселенной сегодня уже неплохо прорисована, хотя многие проблемы еще ждут своего часа.

2. Модель расширяющейся Вселенной.

Вселенная началась около 15 миллиардов лет назад в яростном взрыве; в ранней сверхплотной фазе каждая частица бросилась прочь от каждой другой частицы. Тот факт, что галак$тики удаляются от нас во всех направлениях, является следствием этого начального взрыва, и он является первым обнаруженным Хабблом наблю$дательным открытием.

Сегодня существуют прекрасные доказательства закона Хаббла, который утверждает, что скорость удаления v галактики пропорциональна расстоянию от нас до неё d , то есть, v = Hd, где H есть постоянная Хаббла. Мысленное продолжение траекторий галактик назад во времени показывает, что они сходятся в состояние с высокой плотностью – первоначальное ядро[6].

Коперниковский или космологический принцип утверждает, что Вселенная одинакова во всех направлениях и в любой точке пространства. Это$ приводит к заключеию, что наше положение во Вселенной – по отношению к очен$ь большим масштабам – ни в коей мере не является особенным.

Для такого утверждения существуют значительные наблюдательные основания, включая измеренные распределения галактик и слабых радиоисточников, хотя наилучшим доказательством является практически совершенная однородность реликтового космического микроволнового фонового излучения. Это означает, что любой наблюдатель, находящийся где-угодно во Вселенной будет наслаждаться во многом такими же видами, что и мы, включая наблюдение, что галактики удаляются от него.

Наиболее общепринятой в космологии является модель однородной $изотропной нестационарной горячей расширяющейся Вселенной, построенная на основе общей теории относительности и релятивистской теории тяготения, созданной Альбертом Эйнштейном в 1916 году. В основе этой модели лежат два предположения[7]:

1) свойства Вселенной одинаковы во всех ее точках ($однородность) и направлениях (изотропность);

2) наилучшим известным описанием гравитационного $поля являются уравнения Эйнштейна. Из этого следует так называемая кривизна пространства и связь кривизны с плотностью массы (энергии). Космология, основанная на этих постулатах, – релятивистская.

Важным пунктом дан$ной модели является ее нестационарность. Это определяется двумя постулатами теории относительности:

1) принципом относительности, гласящим, что во всех инерциональных системах все законы сохраняются вне зависимости от того, с какими скоростями, равномерно и прямолинейно движутся эти системы друг относительно друга;

2) экспериментально подтвержденным постоянством скорости света.

Из принятия теории относительности вытекало в качестве следствия (первым это заметил А.А. Фридман в 1922 году), что искривленное пространство не может быть стацио$нарным: оно должно или расширяться, или сжиматься. На этот вывод не было обращено внимания вплоть до открытия американским астрономом Эдвином Хабблом в 1929 году так называемого $«красного смещения».

Красное смещение – это понижение частот электромагнитного излучения: в видимой части спектра линии смещаются к его красному концу. Обнаруженный ранее эффект Доплера гласил, что при удалении от нас какого-либо источника колебаний, воспринимаемая нами частота колебаний уменьшается, а длина волны$ соответственно увеличивается. При излучении происходит «покраснение», то есть линии спектра сдвигаются в сторону более длинных красных волн[8].

Для всех далеких источников света красное смещени$е было зафиксировано, причем, чем дальше находился источник, тем в большей степени. Красное смещение оказалось пропорционально расстоянию до источника, что и подтверждало гипотезу об удалении их, то есть о расширении Мегагалактики – видимой части Вселенной.

Красное смещение надежно подтверждает теоретический вывод о нестационарности области нашей Вселенной с линейными размерами порядка нескольких миллиардов парсек на протяжении, по меньшей ме$ре, нескольких миллиардов лет. В то же время кривизна пространства не может быть измерена, оставаясь теоретической гипотезой.

Возможные сценарии развития нашего мира

1. Пульсирующая модель Вселенной, при которой вслед за периодом расширения наступает период сжатия и все заканчивается Больш$им хлопком.

2. Вселенная со строго подогнанной средней плотностью, в точности равной критической. В этом случае$ наш мир Евклидов, и его расширение все время замедляется.

3. Равномерно расширяющаяся по инерции Вселенная. Именно в пользу такой открытой модели мира до последнего времени свидетельствовали данные о подсчете средней плотности нашей Вселенной.

4. Мир, расширяющийся$ со все нарастающей скоростью. Новейшие экспериментальные данные и теоретические изыскания говорят о том, что Вселенная разлетается все быстрее, и, несмотря на евклидовость нашего мира, большая часть галактик в будущем будет нам недоступна. И виновата в столь странном устроении мира та самая темная энергия, которую сегодня связали с некоей внутренней энергией вакуума, заполняющего все пространство.

ЗАКЛЮЧЕНИЕ

До начала прошлого века было всего два взгляда на происхождение нашей Вселенной. Ученые полагали, что она вечна и неизменна, а богословы говорили, чт$о Мир сотворен и у него будет конец. Двадцатый век, разрушив очень многое из того, что было создано в предыдущие тысячелетия, сумел дать свои ответы на большинство вопросов, занимавших умы ученых прошлого. И быть может, о$дним из величайших достижений ушедшего века является прояснение вопроса о том, как возникла Вселенная, в которой мы живем, и какие существуют гипотезы по поводу ее будущего.

Вселенная, рассматриваемая как единое целое, – физическая систем$а со своими особыми свойствами, которые не сводятся к сумме свойств населяющих ее астрономических тел. Эти свойства проявляются в явлениях самых больших пространственно-временных масштабов. Их изучает космология – наука, опирающаяся на астрокосмические наблюдения и общие законы физики. Вселенная – самый крупный по масштабу объект науки$.

Расширение Вселенной – одна из фундаментальных концепций современной науки – до сих пор получает различное толкование. Не следует воспринимать терм$ин «Большой взрыв» буквально. Он не был бомбой, взорвавшейся в центре Вселенной. Это был взрыв самого пространства, который произошел повсеместно, подобно тому, как расширяется поверхность надуваемого воздушного шара[9].

Понимание различия между расширением пространства и расширением в пространстве крайне важно для того, чтобы понять, каков размер Вселенной, скорость разбегания галактик, а также возможности астрономич$еских наблюдений и природы ускорения расширения, которое, вероятно, испытывает Вселенная. Модель Большого взрыва описывает лишь то, что случилось после него.

Теория Большого взрыва не дает нам информации о размере Вселенной и даже о том, конечна она или бесконечна.$ Теория относительности описывает, как расширяется каждая область пространства, но ничего не говорится о размере или форме.

Открытие расширяющейся Вселенной было одним из великих интеллектуальных переворотов двадцатого века.

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

1. Баренбаум А.А. Галактика. Солнечная система. Земля. М., 2002. – 234 с.

2. Ващекин Н.П. Концепции современного естествознания.- М.: МГУК, $2000, 189 с.

3. Вейнберг С. Гравитация и космология. Принципы и приложения о$бщей теории относительности. – М.: 1975, 695 с.

4. Климишин И.А. Релятивистская астрономия. – М., Наука, 1989.

5. Концепции современного естествознания. / Под ред. С.И. Самыгина. – Ростов /нД: “Феликс”, 2002. – 448 с.

6. Кэри У. В поисках закономерностей развития Земли и Вселенной. – М., Мир. 1991.

7. Мэй Б., Мур П., Линтотт К. Большой взрыв. Полная история Вселенной. – М.: Ниола-Пресс, 2007. – 192 с.

8. Панасюк М.И. Странники Вселенной или эхо Большого взрыва. – М.: 2005, 267 с.

9. Пенроуз Р. Гравитационны$й коллапс и пространственно-временные сингулярности // Альберт Эйнштейн и теория гравитации. – М., 1979.

10. Силк Дж. Большой взрыв. Рождение и эволюция Вселенной. – М., Мир, 1982.

11. Френкель В.А., Чернин А.Д. От альфа-распада до Большого$ Взрыва. – М., Знание, 1990.

12. Хокинг С. От Большого взрыва до черных дыр (краткая история времени). – М., Мир, 1990.

[1] Вейнберг С. Гравитация и космология. Принципы и приложения общей теории относительности. – М.: 1975, 695 с.

[2]Силк Дж. Большой взрыв. Рождение и$ эволюция Вселенной. – М., Мир, 1982.

[3] Хокинг С. От Большого взрыва до черных дыр (краткая история времени). – М., Мир, 1990.

[4] Баренбаум А.А. Галактика. Солнечная система. Земля. М., 2002. – 234 с.

[5] Кэри У. В поисках закономерностей развития Земли и Вселенной. – М., Мир.$ 1991.

[6] Мэй Б., Мур П., Линтотт К. Большой взрыв. Полная история Вселенной. – М.: $Ниола-Пресс, 2007. – 192 с.

[7] Пенроуз Р. Гравитационный коллапс и пространственно-временные сингулярности // Альберт Эйнштейн и теория гравитации. – М., 1979.

[8]Френкель В.А., Чернин А.Д. От альфа-распада до Большого Взрыва. – М., Знание, 1990.

[9]Панасюк М.И. Странники Вселенной или эхо Большого взрыва. – М.: 2005, 267 с.

Post Comment