Скалярний добуток двох векторів його властивості Векторний добуток його властивості Змішаний

$

Реферат на тему:

Скалярний добуток двох векторів, його властивості. Векторний добуток, його властивості. Змішаний добуток трьох векторів, його властивості.

План

  • Скалярний добуток векторів.
  • Властивості скалярного добутку.
  • Скалярний добуток векторів, заданих координатами.
  • Векторний добуток векторів.
  • Властивості векторного добутку.
  • Векторний добуток векторів, заданих координатами.
  • Змішаний добуток векторів.
  • Зм$ішаний добуток векторів, заданих координатами.

1. Скалярний добуток двох векторів

Скалярним добутком двох векторів і називається добуток довжин цих векторів на косинус кута, утвореного векторами, тобто

Тут символ означає кут між векторами. Нехай .

Тоді тобто с$калярний добуток будь-якого вектора на одиничний вектор визначає величину проекції вектора на напрямок одиничного вектора.

Скалярний добуток двох векторів дорівнює добутку довжини одного з них на проекцію іншого на напрям першого.

Приклад. Під дією даної сили тіло перемістилося у даному напрямку на величину . Обчислити роботу сили (рис.2.12).

$

Рис.2.12

Р о з в ’ я з о к. Розкладемо силу на суму двох доданків : . Очевидно, робота суми сил дорівнює сумі складових сил. Але робота сили , перпендикулярної до напрямку шляху, дорівнює нулю, а робота сили , паралельної шляху, дорівнює добутку модуля сили на довжину шляху:

.

Але , тому остаточно одержимо

.

Скалярний добуток позначається одним з трьох способів:

.

Основні властивості скалярного доб$утку.

10.

Якщо то Якщо то або або або а у нульового вектора напрям — довільний.

20. — випливає зразу з означення .

$30.

40..

Нехай Тоді

,

бо добутки взаємно перпендикулярних одиничних векторів дорівнюють нулю, а добутки паралельних однаково спрямованих одиничних векторів дорівнюють одиниці.

Отже,

, (2.9)

тобто дорівнює сумі добутків однойменних координат векторів.

$

Якщо , то з (2.9) маємо

(2.10)

Тому (2.11)

З формули (2.10) маємо . (2.12)

Формулами (2.10) і (2.12) визначаються відповідно квадрат довжини вектора і квадрат віддалі між точками і .

Якщо вектор -одиничний, то його проекціями на осі координат і відповідно є і . Тому з формули (2.11) маємо

$ . (2.13)

Оскільки , то

. (2.14)

Якщо у формулі (2.14) вектор ,то одержимо косинус кута, що його утворює вектор з віссю :

Аналогічно матимемо косинуси кутів і вектора з осями відповідно і:

Приклад. Визначити кут між векторами і ,$ якщо вектор

перпендикулярний до вектора , а вектор перпендикулярний до вектора .

Р о з в ’ я з о к. Із перпендикулярності векторів і маємо

.

Аналогічно.

Отже, маємо систему рівнянь:

Віднявши від першого рівняння друге, одержимо

Тоді

Отже,

2. Векторний до$буток двох векторів

Як відомо із шкільного курсу фізики, моментом сили відносно точки називається добуток сили на довжину плеча (плече сили – це відрізок від точки до лінії дії сили ), тобто . Ро$зглянемо силу , момент якої відносно точки треба знайти. Очевидно, момент буде повністю визначений, якщо будуть задані:

1) числові значення моменту, що дорівнює ;

2) площина, у якій лежать сила і точка ;

3) напрям, в якому діє сила.

Всі ці три характеристики можна виразити за допомогою одного вектора , якщо 1) ; 2) ( — площина); 3) спрямуємо вектор так, щоб цей напрямок був деяким однозначним чином зв’язаний з напрямом сили (рис. 2.13 а,б). У ролі такого зв’язку

між напрямами виберемо “правило свердлика “: проведемо вектор так, щ$об обертання головки свердлика збігалося з напрямом дії сили, а поступальний рух свердлика збігався з напрямом вектора . Тоді, у випадку, показаному на рис. 2.13б – донизу. Вектор є вектором моменту сили. Якщо ввести в розгляд вектор (рис.2.13), то, враховуючи, що

Рис. 2.13а Рис.2.13б

, матимемо числове значення вектора :

$

а напрямок його визначається за “правилом свердлика”. Вектор можна паралельно перенести в точку . Добуток можна трактувати як площу паралелограма, побудованого на векторах і .

Розглянемо впорядковану трійку векторів яка віднесена до спільного початку. Вектори утворюють праву трійку, якщо з кінця вектора видно найкоротший поворот від вектора до вектора проти стрілки годинника. В противному$ випадку, якщо цей поворот видно за стрілкою годинника, то вектори утворюють ліву трійку.

Означення. Векторним добутком вектора на вектор

називається такий третій вектор , довжина якого чисельно

дорівнює площі паралелограма, побудованого на векторах і , перпендикулярний до площини цих векторів і спрямований так, що вектори утворюють праву трійку.

$ З означення випливає, що довжина вектора становить

.

Векторний добуток на позначається символом

або .

Отже, в розглянутому прикладі про момент сили можна записати: або , а напрямок вектора , якщо

поглянути на напрямки обертання головки свердлика, відповідає тому, який визначається означенням векторного добутку.

До поняття векторного добутку приводять багато інших задач фізики і техніки. Наприклад, зв’язок між кутовою швидкістю обертання, лінійною швидкістю і радіусом обертання теж дається векторним добутком .

З означення векторного добутку$ випливає, що він перетворюється в нуль тоді і тільки тоді, коли хоч би один з векторів дорівнює нулю, або якщо вектори колінеарні (тобто паралельні).

Умови колінеарності двох векторів і виглядає так:

$ і, зокрема, .

Умову колінеарності можна виразити і так: , де — числовий множник.

Розглянемо векторний добуток векторів, заданих координатами.

Користуючись означеннями векторного добутку, легко довести, що

Останні три рівності легко запам’ятати за схемою, зображеною на рис.2.14, рухаючись у напрямку, показаному стрілками. Якщо рухатись

Рис.2.14

у протилежному напрямку, то матимемо

.

Нехай .

Тоді

.

Враховуючи таблицю одиничних ортів, одержимо

$.

Отже,

. (2.15)

Основні властивості векторного добутку.

10. (ця властивість доведена раніше).

20. .

Доведення цієї властивості випливає з рівнос$ті (2.15). Справді, в результаті перестановки множників у добутку 2-й і 3-й рядки визначника в (2.15) поміняються місцями, а це означає, що знак визначника зміниться.

30. і .

Ці рівності теж легко доводяться на основі рівності (2.15).

40.

Читачеві пропонується довести цю властивість самостійно.

Приклад . Знайти віддаль від точки до прямої,

що проходить через точку паралельно вектору .

Р о з в ’ я з о к. На векторах і побудуємо паралелограм (рис.2.15). Оскільки згідно з означе$нням векторного добутку площа паралелограма чисельно дорівнює модулю векторного добутку векторів і , то .

Отже,

$

.

Тому

.

Оскільки , то

Але .

Тепер вже легко записати, чому дорівнює .

Рис.2.15

3. Векторно-скалярний (змішаний) добуток

трьох векторів

Коли мова йде про добуток трьох векторів і , можлив$і такі випадки:

Легко зрозуміти, що перший добуток є вектором, бо є скаляр, а добуток скаляра на вектор – вектор; у третьому випадку маємо векторний добуток , що множиться векторно на вектор , тобто зводиться до обчислення векторного добутку після того, як обчислено . У другому випадку справа зводиться до обчислення скалярного добутку після того, як обчислено .

З розглянутих трьох добутків змішаним є . Вивченням цього добутку і займемося.

Зрозуміло, що чисельно визначає площу паралелограма, побудованого на векторах і . Нехай $. Тоді Чисельно . Але за означенням векторного добутку, а , бо вектор проектувався на вектор .

Отже $чисельно можна вважати рівним об’єму паралелепіпеда, побудованого на векторах і із знаком “+” або “-” (рис .2.16). Об’єм, очевидно, буде додатним, якщо — гострий, а якщо цей кут тупий, то об’єм буде від’ємним.

Змішаний добуток, як правило, записують так: .

Змішаний добуток векторів, заданих координатами.

Нехай

.

.

Отже,

або

. (2.16)

Рис. 2.16

Висновок. Векторно-скалярний добуток трьох векторів заданих своїми проекціями, дорівнює в$изначнику третього порядку, складеному з цих проекцій.

З формули (2.16), користуючись тим, що при перестановці двох сусідніх рядків визначника його знак змінюється на протилежний і відповідно переставляються множники у мішаному добутку, вірна така рівність:

,

тобто кругова перестановка трьох множників векторно-скалярного добутку не змінює його величини.

Перестановка двох сусідніх множників змінює знак до$бутку. Із формули (2.16) випливає також, що .

Якщо три вектори компланарні (паралельні одній і тій же площині), тоді і, значить, — необхідна і достатня умова компланарності векторів і . Цей факт очевидний і з геометричних міркувань. Об’єм паралелепіпеда в цьому випадку дорівнює нулю.

Приклад 1. Знайти найкоротшу віддаль між двома прямими, якщо одна з них проходить через точку паралельно вектору , а друга проходить через точку паралельно векто$ру (рис.2.17).

Рис. 2.17

Р о з в ’ я з о к. Побудуємо вектор і проведемо через точку пряму паралельну , а через точку пряму , паралельну прямій . Тоді прямі і та і $ визначають собою дві паралельні площини. Віддаль між цими площинами і буде найкоротшою віддаллю між прямими і . На векторах , і будуємо паралелепіпед. Його об’єм

(куб. од.)

Знайдемо площу основи паралелепіпеда:

Тоді (кв. од).

Але. Звідси

(л. од.).

Приклад 2. Обчисли$ти площу паралелограма, побудованого на векторах , де і — одиничні взаємно перпендикулярні вектори.

Р о з в ’ я з о к. Площа паралелограма дорівнює модулю векторного добутку векторів. Тому знайдемо

, бо

і $.

Далі маємо . Оскільки і — одиничні взаємно перпендикулярні вектори, то .

Отже, (кв. од.).

Post Comment